(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
top(sent(x)) → top(check(rest(x)))
rest(nil) → sent(nil)
rest(cons(x, y)) → sent(y)
check(sent(x)) → sent(check(x))
check(rest(x)) → rest(check(x))
check(cons(x, y)) → cons(check(x), y)
check(cons(x, y)) → cons(x, check(y))
check(cons(x, y)) → cons(x, y)
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
top(sent(cons(x2_0, cons(x193_0, y194_0)))) →+ top(sent(cons(check(x193_0), y194_0)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [y194_0 / cons(x193_0, y194_0)].
The result substitution is [x2_0 / check(x193_0)].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
top(sent(x)) → top(check(rest(x)))
rest(nil) → sent(nil)
rest(cons(x, y)) → sent(y)
check(sent(x)) → sent(check(x))
check(rest(x)) → rest(check(x))
check(cons(x, y)) → cons(check(x), y)
check(cons(x, y)) → cons(x, check(y))
check(cons(x, y)) → cons(x, y)
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
top(sent(x)) → top(check(rest(x)))
rest(nil) → sent(nil)
rest(cons(x, y)) → sent(y)
check(sent(x)) → sent(check(x))
check(rest(x)) → rest(check(x))
check(cons(x, y)) → cons(check(x), y)
check(cons(x, y)) → cons(x, check(y))
check(cons(x, y)) → cons(x, y)
Types:
top :: sent:nil:cons → top
sent :: sent:nil:cons → sent:nil:cons
check :: sent:nil:cons → sent:nil:cons
rest :: sent:nil:cons → sent:nil:cons
nil :: sent:nil:cons
cons :: sent:nil:cons → sent:nil:cons → sent:nil:cons
hole_top1_0 :: top
hole_sent:nil:cons2_0 :: sent:nil:cons
gen_sent:nil:cons3_0 :: Nat → sent:nil:cons
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
top,
checkThey will be analysed ascendingly in the following order:
check < top
(8) Obligation:
TRS:
Rules:
top(
sent(
x)) →
top(
check(
rest(
x)))
rest(
nil) →
sent(
nil)
rest(
cons(
x,
y)) →
sent(
y)
check(
sent(
x)) →
sent(
check(
x))
check(
rest(
x)) →
rest(
check(
x))
check(
cons(
x,
y)) →
cons(
check(
x),
y)
check(
cons(
x,
y)) →
cons(
x,
check(
y))
check(
cons(
x,
y)) →
cons(
x,
y)
Types:
top :: sent:nil:cons → top
sent :: sent:nil:cons → sent:nil:cons
check :: sent:nil:cons → sent:nil:cons
rest :: sent:nil:cons → sent:nil:cons
nil :: sent:nil:cons
cons :: sent:nil:cons → sent:nil:cons → sent:nil:cons
hole_top1_0 :: top
hole_sent:nil:cons2_0 :: sent:nil:cons
gen_sent:nil:cons3_0 :: Nat → sent:nil:cons
Generator Equations:
gen_sent:nil:cons3_0(0) ⇔ nil
gen_sent:nil:cons3_0(+(x, 1)) ⇔ sent(gen_sent:nil:cons3_0(x))
The following defined symbols remain to be analysed:
check, top
They will be analysed ascendingly in the following order:
check < top
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
check(
gen_sent:nil:cons3_0(
+(
1,
n5_0))) →
*4_0, rt ∈ Ω(n5
0)
Induction Base:
check(gen_sent:nil:cons3_0(+(1, 0)))
Induction Step:
check(gen_sent:nil:cons3_0(+(1, +(n5_0, 1)))) →RΩ(1)
sent(check(gen_sent:nil:cons3_0(+(1, n5_0)))) →IH
sent(*4_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
top(
sent(
x)) →
top(
check(
rest(
x)))
rest(
nil) →
sent(
nil)
rest(
cons(
x,
y)) →
sent(
y)
check(
sent(
x)) →
sent(
check(
x))
check(
rest(
x)) →
rest(
check(
x))
check(
cons(
x,
y)) →
cons(
check(
x),
y)
check(
cons(
x,
y)) →
cons(
x,
check(
y))
check(
cons(
x,
y)) →
cons(
x,
y)
Types:
top :: sent:nil:cons → top
sent :: sent:nil:cons → sent:nil:cons
check :: sent:nil:cons → sent:nil:cons
rest :: sent:nil:cons → sent:nil:cons
nil :: sent:nil:cons
cons :: sent:nil:cons → sent:nil:cons → sent:nil:cons
hole_top1_0 :: top
hole_sent:nil:cons2_0 :: sent:nil:cons
gen_sent:nil:cons3_0 :: Nat → sent:nil:cons
Lemmas:
check(gen_sent:nil:cons3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_sent:nil:cons3_0(0) ⇔ nil
gen_sent:nil:cons3_0(+(x, 1)) ⇔ sent(gen_sent:nil:cons3_0(x))
The following defined symbols remain to be analysed:
top
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol top.
(13) Obligation:
TRS:
Rules:
top(
sent(
x)) →
top(
check(
rest(
x)))
rest(
nil) →
sent(
nil)
rest(
cons(
x,
y)) →
sent(
y)
check(
sent(
x)) →
sent(
check(
x))
check(
rest(
x)) →
rest(
check(
x))
check(
cons(
x,
y)) →
cons(
check(
x),
y)
check(
cons(
x,
y)) →
cons(
x,
check(
y))
check(
cons(
x,
y)) →
cons(
x,
y)
Types:
top :: sent:nil:cons → top
sent :: sent:nil:cons → sent:nil:cons
check :: sent:nil:cons → sent:nil:cons
rest :: sent:nil:cons → sent:nil:cons
nil :: sent:nil:cons
cons :: sent:nil:cons → sent:nil:cons → sent:nil:cons
hole_top1_0 :: top
hole_sent:nil:cons2_0 :: sent:nil:cons
gen_sent:nil:cons3_0 :: Nat → sent:nil:cons
Lemmas:
check(gen_sent:nil:cons3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_sent:nil:cons3_0(0) ⇔ nil
gen_sent:nil:cons3_0(+(x, 1)) ⇔ sent(gen_sent:nil:cons3_0(x))
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
check(gen_sent:nil:cons3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
(15) BOUNDS(n^1, INF)
(16) Obligation:
TRS:
Rules:
top(
sent(
x)) →
top(
check(
rest(
x)))
rest(
nil) →
sent(
nil)
rest(
cons(
x,
y)) →
sent(
y)
check(
sent(
x)) →
sent(
check(
x))
check(
rest(
x)) →
rest(
check(
x))
check(
cons(
x,
y)) →
cons(
check(
x),
y)
check(
cons(
x,
y)) →
cons(
x,
check(
y))
check(
cons(
x,
y)) →
cons(
x,
y)
Types:
top :: sent:nil:cons → top
sent :: sent:nil:cons → sent:nil:cons
check :: sent:nil:cons → sent:nil:cons
rest :: sent:nil:cons → sent:nil:cons
nil :: sent:nil:cons
cons :: sent:nil:cons → sent:nil:cons → sent:nil:cons
hole_top1_0 :: top
hole_sent:nil:cons2_0 :: sent:nil:cons
gen_sent:nil:cons3_0 :: Nat → sent:nil:cons
Lemmas:
check(gen_sent:nil:cons3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_sent:nil:cons3_0(0) ⇔ nil
gen_sent:nil:cons3_0(+(x, 1)) ⇔ sent(gen_sent:nil:cons3_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
check(gen_sent:nil:cons3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
(18) BOUNDS(n^1, INF)